
Accelerat ing the world's research.

Cloud-based driver monitoring and
vehicle diagnostic with OBD2
telematics

Shashika Muramudalige, Malintha Amarasinghe, Afkham Azeez

2015 IEEE International Conference on Electro/Information Technology (EIT)

Cite this paper

Get the citation in MLA, APA, or Chicago styles

Downloaded from Academia.edu

Related papers

Advanced Automot ive Fault Diagnosis, 2nd Ed. - (Malestrom)
ernesto perez

advanced automot ive fault diagnosis.pdf
azis zunanto

Experimental Measurement of the Environmental Impact of a Euro IV Vehicle in its Urban Use
Fernando Ortenzi

Download a PDF Pack of the best related papers

https://www.academia.edu/19099301/Cloud_based_driver_monitoring_and_vehicle_diagnostic_with_OBD2_telematics?auto=citations&from=cover_page
https://www.academia.edu/19099301/Cloud_based_driver_monitoring_and_vehicle_diagnostic_with_OBD2_telematics?from=cover_page
https://www.academia.edu/36113790/Advanced_Automotive_Fault_Diagnosis_2nd_Ed_Malestrom_?from=cover_page
https://www.academia.edu/28376085/advanced_automotive_fault_diagnosis_pdf?from=cover_page
https://www.academia.edu/17467038/Experimental_Measurement_of_the_Environmental_Impact_of_a_Euro_IV_Vehicle_in_its_Urban_Use?from=cover_page
https://www.academia.edu/19099301/Cloud_based_driver_monitoring_and_vehicle_diagnostic_with_OBD2_telematics?bulkDownload=thisPaper-topRelated-sameAuthor-citingThis-citedByThis-secondOrderCitations&from=cover_page

2015 International Conference on Advances in ICT for Emerging Regions (ICTer) :

24th - 26th August 2015 International Conference on Advances in ICT for Emerging Regions ICTer2015

Cloud-Based Driver Monitoring and Vehicle
Diagnostic with OBD2 Telematics

Malintha Amarasinghe#1, Sasikala Kottegoda#2, Asiri Liyana Arachchi#3, Shashika Muramudalige#4, H. M. N.
Dilum Bandara#5, and Afkham Azeez*6

#Department of Computer Science and Engineering, University of Moratuwa,

Katubedda, Sri Lanka, 10400
1-5{malintha.10, sasikala.10, asiri.10, shashika.10, dilumb}@cse.mrt.ac.lk

*WSO2 Lanka Inc.

Colombo 03, Sri Lanka.
6azeez@wso2.com

Abstract— We present a cloud-based vehicular data acquisition
and analytics system for real-time driver behavior monitoring,
trip analysis, and vehicle diagnostics. Our system consists of an
On Board Diagnostics (OBD) port to Bluetooth dongle, a mobile
app running on a smart phone, and a cloud-based backend. We
use a Complex Event Processor (CEP) at both the smart phone
and the backend to detect and notify unsafe and anomalous
events in real time. For example, CEP engine at the smart phone
can alert the driver about rising coolant temperature and rapid
fuel drops. It also provides a trip log and filter out what messages
to be send to the backend, saving both the bandwidth and power.
CEP on the cloud detects reckless driving in real time based on
the sensor data provided through the OBD port. Historical data
is also used by the backend CEP engine to detect driving
anomalies and to predict impeding sensor failures. The mobile
app visualizes both real-time data from sensors and alerts. A web-
based interface is provided to access the backend information.
We tested the system on actual vehicles and demonstrated that
the computing, bandwidth, and power consumption of the smart
phone is reasonable. App is currently available in Google Play.

Keywords— Driver Monitoring, Internet of Things, OBD2,
Vehicle Diagnostics

I. INTRODUCTION

A car is no more a luxurious belonging of a person. It has
rather become an integral part of a modern family. The usage
of vehicles all over the worlds has drastically increased during
the last decade. Over 60 million passenger cars have been
manufactured in the year of 2012 [1]. This rapid increase of
vehicles has led to many concerns for a range of people and
organizations. For example, all parties (i.e., drivers, insurance
companies, fleet vehicle managers, and low enforcement
authorities) are concerned about reckless driving and driver
anomalies. Moreover, people who are willing to purchase and
sell cars are also concerned about the condition of the vehicle
and its maintenance.

OBD, which stands for On Board Diagnostics could simply
be described as a standard which allows accessing the status of
sensors attached to a vehicle via a port referred to as the OBD
port. Some of the frequently used sensors include speed,
engine rpm, coolant temperature, fuel rate and oxygen. OBD2
[2], is the latest version of OBD and is implemented in most
of the vehicles which are manufactured lately. Several adapters
are commercially available to read data from the OBD2 port.
ELM-327, which is used in the proposed system, is one such
adapter where the data read from the OBD2 port are
transmitted via Bluetooth upon pairing.

Given the potential benefits of vehicular data analysis and
the availability of technologies such as OBD, several vehicle
monitoring and intelligent transport systems have been
proposed. The vehicle diagnosis program proposed by Kim et
al. [3] provides diagnosis of different kinds of vehicle
malfunctions within the navigation system. It displays the data
collected through the OBD port in a human readable manner.
To see this information the driver has to select the “vehicle
information” menu of the navigation pane. Much of this
information is displayed on the dashboard by default. Besides,
a driver cannot be staring into the navigation pane while
driving since it distracts the driver. A lot of research work has
been carried out in the area of vehicle monitoring through a
server. While the main focus of most of the researches is on
tracking vehicles [4, 5, 6], fault detection has also gained
considerable attention [4, 6]. But there has not been a single
system which considers all the aspects that would be of
concern to people who are dealing with vehicles. Also, in
almost all the proposed systems, there has been either simple
or no processing of the data gathered from the Engine Control
Unit (ECU) prior to display. Hence, it is hard to predict any
undesired outcomes, such as an accident or failure of a sensor
as they require both real time and long-term analysis of data
regarding the driving habits and the vehicle condition.

The proposed system is similar to the above described
systems from the aspect that it uses OBD2 protocol and an
Android app as the device of mediation. In addition, it comes
with a set of complex analyses to perform reckless driving
detection, driving anomaly detection, vehicle sensor failure
prediction, high fuel consumption and high coolant
temperature alert generation, and trip detail summarization.
The analyses are performed on real time data as well on
archived data that are collected over a long period of time.
While some of these analyses are performed within the app,
more complex and resource consuming ones are performed in
the backend. The results of these analyses are made visible
through two interfaces. The drivers themselves are able to get
the results through the mobile app in the form of notifications.
Alerts generated both in the app and backend due to
undesirable situations are notified to the drivers. Also, results
of long term analyses are displayed through a web interface.
The web interface enables stakeholders such as vehicle owners,
fleet vehicle managers, insurance companies, and authorities
to analyze various cases of interest and initiate necessary
process changes to enhance service quality, efficiency, cost,
and promote responsible driving.

mailto:1-5%7b%20malintha.10
mailto:asiri.10
mailto:shashika.10@
mailto:dilumb%7d@cse.mrt.ac.lk
mailto:6azeez@wso2.com

Cloud-Based Driver Monitoring and Vehicle Diagnostic with OBD2 Telematics 2

24th - 26th August 2015 International Conference on Advances in ICT for Emerging Regions ICTer2015

Section II describes the architecture of the proposed system
along with the key components. Section III describes driver
monitoring features whereas vehicle diagnostic features are
described in Section IV. Section V presents the experimental
results. Conclusion and future enhancements are presented in
Section VI.

II. SOLUTION ARCHITECTURE

The proposed system is capable of collecting, storing, and
analyzing vehicular data for a long period of time. As shown
in Fig. 1 the mobile app pulls the vehicular data using an
OBD2 to Bluetooth interface. The collected data is then
preprocessed at the smartphone to detect interesting events.
The preprocessed data is then sent to backend cloud servers
using the smartphone’s 3G/4G connection.

Fig. 2 shows the architecture of the proposed solution. The
solution is designed in a scalable and an extensible manner so
that the system can be extended to have a rich set of
functionalities supporting numerous vehicles, sensors, and
servers as needed. The mobile app is one of the key elements
of the system, as it is responsible for the data transmission
between the vehicle and the backend servers while also
performing the task of the view layer. The app plays three
major roles throughout the process:

1) Receiving data from OBD2 adapter: The app is capable
of connecting to the ELM-327 adaptor via Bluetooth and
communicating with the vehicle using OBD2 Parameter IDs
(PIDs). Each PID provides a certain information about the
vehicle, e.g., speed, engine rpm, fuel consumption, and error
codes. The received data are logged inside the app and/or
displayed in the user interface in real time. The architecture of
the app is also extensible where the PIDs can be added
dynamically.

2) Monitoring vehicle: The mobile app consists of a
Complex Event Processor (CEP). Complex event processing
can be regarded as a service that receives and matches lower-
level events and generates higher-level events in real time.
Simply, it is a component that responds to event streams in an
event driven manner. Hence, CEP has the capability to detect
relevant events in incoming data streams according to a
predefined set of queries. For example, queries can be added
to alert the driver, if the vehicle is running with a high rate of
fuel consumption or high coolant temperature for a
considerably long period of time. CEP queries can be also used
to summarize trip details in real time, e.g., average fuel
consumption for the ongoing trip. We use Android
implementation of the WSO2 Siddhi CEP engine as it is
lightweight and outperforms many other CEP engines in terms
of throughput and latency [7]. Moreover, Siddhi supports
adding queries dynamically hence provides extensibility to
support future monitoring tasks as well. More specifically,
OBD2 data from the engine are received as event streams (e.g.,
speed stream consisting of time stamp and speed, fuel stream,
coolant temperature stream, etc.). The Siddhi CEP engine
decides the importance of the received streams and depending
on the information they provide, it decides two things. For
simple use cases such as coolant temperature monitoring it
makes the app generate an alert. For complex use cases, it
transmits the filtered streams to the backend servers. Alerts are
generated when unusual behaviors are detected in the
incoming data (i.e., data matching a given CEP query is found)

and the results are shown/notified to the driver via the mobile
app.

3) Selective transmission of data to backend: A user has to
pay for each megabyte that is consumed over the 3G/4G
network. Therefore, the network bandwidth usage of the app
is an important fact to consider. Hence, the CEP queries are
used in the mobile app to filter out uninteresting events and
only the useful data are transmitted over the 3G/4G network.
CEP queries are also used to collect and send only the
aggregated data for certain types of sensor readings. Such
reduction in data not only reduces the bandwidth requirement,
but also minimizes power consumption of the smartphone.
Data are forwarded to the backend using HTTP messages.

Complex event processing is also utilized at the backend.
Backend is also based on the Siddhi CEP engine; however,
with a lot more computing capabilities and with the freedom
to work with a large database. The CEP at the backend is
responsible for detecting more complex driver and engine
anomalies (e.g., reckless driving) and generating alerts in real
time. Some of these alerts are pushed back (as push
notifications) to the mobile app and notified to the driver. For
example, warn the driver for reckless behavior and speed alters
based on known GIS (Geographic Information System)
information.

The system is capable of performing long term analyses too.
By identifying patterns, it should be able to predict undesirable
outcomes such as potential failures of sensors. This is enabled
by using a Business Activity Monitor as the long term analyzer
at the backend. BAM is a solution primarily intended to
provide a real-time summary of business activities and is
capable of collecting, storing, and analyzing data. In our
implementation BAM receives events published by the mobile

Fig. 1. Overview of the proposed system.

Fig. 2. Architecture of the proposed system.

3 M. Amarasinghe, S. Kottegoda, A. Liyana Arachchi, S. Muramudalige, H.M.N.D. Bandara, and A. Azeez

24th-26th August 2013 International Conference on Advances in ICT for Emerging Regions ICTer2015

app and stores them in a NoSQL database where analyses are
performed regularly to identify gradual changes in data. We
use WSO2 BAM [8] due to its performance and better
integration with the Siddhi CEP engine. WSO2 BAM supports
distributed processing, integrated with Apache Cassandra, a
highly-scalable NoSQL database. This enables the distributed
processing of datasets of a large number of vehicles and their
owners across clusters of computers. While some of the results
of analyses are notified to the user in the form of alerts (e.g.,
popups, e-mail, and SMS), all the results of the analyses
performed in the backend are displayed on the web portal. This
way, drivers themselves could monitor their driving behaviors
and changes in the vehicle condition. Similarly, organizations
could monitor their customers’ behaviors and conditions of the
vehicles that are owned by them. To support multiple users,
roles, and devices the propose system also provide necessary
identity and authorization services at the backend (see Fig. 2).

III. DRIVER MONITORING

Driver monitoring includes two aspects. First is reckless
driver monitoring, which is mostly useful to vehicle owners
and organizations such as insurance companies and law
enforcement authorities. The recklessness of the driver’s
driving pattern can be measured within a certain period of time
such as 20 hours, one week, one month, and three months.
Second is driver anomaly detection. While anomaly detection
is important for the above organizations, it is more important
to the drivers themselves to get alerted when they deviate from
their usual driving pattern due to stress, drunk, distractions, etc.
The two use cases are described in the following subsections.

A. Reckless Driving

Reckless driving causes a serious danger to the driver as
well as general public. If a reckless driving detection
methodology can be implemented, it will be beneficial for
other drivers, vehicle owners, general public, insurance
companies, and many other stakeholders who would not want
to risk time and money for the consequences of reckless
driving.

Bhoyar et al. [9] proposed a system for reckless driving
detection, which is a mobile phone based rash driving
detection system. There, reckless driving behavior was
detected using the lateral acceleration and longitudinal
acceleration. Many of the literature demonstrated that the
sudden variation of the longitudinal acceleration is a good
metric to detect reckless driving. Therefore, we also used
longitudinal acceleration to detect reckless driving. The
proposed solution for detecting reckless driving include
following two steps:

1) Preprocessing within app: The speed of the vehicle can be
read in real time from the OBD2 adapter. Because it is the
acceleration/deceleration that is of concern, the Siddhi CEP
engine transforms the speed streams into
acceleration/deceleration streams by considering consecutive
speed readings using the following Siddhi query:

Calculated acceleration/deceleration is compared with a
predefined threshold to detect whether it is reckless or not. We
use a threshold of 4.5 ms-2, as per the recommendation by the

American Association of State Highway and Transportation
Officials [10]. Binary values of 1 are assigned to the
acceleration/deceleration values above the threshold and
binary 0 is assigned for values below the threshold. The total
number of 1’s is then counted over a predefined time interval
(e.g., 2 minutes). The counts are then classified according to
the driving cycle (i.e., traffic, normal, and highway) of the trip.
A driving cycle is a series of data points representing the speed
of a vehicle versus time. Driving cycle is determined by the
average speed of the vehicle throughout 10 minutes. The count,
together with the detected driving cycle are sent to the backend
server periodically. Acceleration and deceleration values are
sent as two separate streams.

2) Processing at Backend

At the backend, data received from the app are summarized
by the WSO2 BAM as hourly, weekly, monthly, and three
months aggregates and stored in an SQL database ready to be
read by the web portal. Moreover, when the aggregate for a
given time window is above a predefined threshold, alerts can
be pushed to both the drivers and other stakeholders.

B. Detection of Driving Anomalies

Identifying driver patterns have become a principal research
area due to the high concern about fuel efficiency and safe
driving. Liaw [11] proposed a solution to the problem of
identifying driving patterns using fuzzy logic. There, the main
focus has been on classifying the region a driver usually drives
in, where regions are considered to be of five main categories
such as stop-n-go, urban, suburban, rural, and highway. Wahab
et al. [12] suggests that the driving pattern can uniquely define
a driver, thus enabling us to use it as a biometric. There, it is
explained that, what is unique to each driver is the pressure
distribution with time on the accelerator and brake pedals.
Also, it was found that it is not the speed pattern, but the
acceleration pattern that is unique to each driver.

We use a hidden Markov model to determine the difference
between the current driving pattern and the past patterns of a
(driver, vehicle) combination. Identifying driving anomalies
happens in the following three stages:

1) Preprocessing: As in the use case of reckless driving
detection, it is the acceleration that is of concern. Siddhi CEP
engine transforms the speed streams into acceleration streams.
These acceleration streams are then converted to acceleration
transition streams which consist of the timestamp, previous
acceleration, and the current acceleration. These acceleration
streams are transmitted to the backend. These streams are used
by the CEP in real time for calculating whether the readings
are in accordance with the normal driving pattern. The same
stream is also used by BAM to update the model daily.

2) Model Creation: The Markov Model is shown in Fig. 3 is
stored in an SQL database in the form of a transition table of
accelerations. The BAM processes the events (i.e.,
acceleration transition streams) received from the app, and
then updates its transition table consisting of daily transition
probabilities. Therefore, the more acceleration readings the
BAM receive, the more accurate the model becomes.

3) Determining Anomalies: This is a task that happens almost
in real time. An anomaly is detected by calculating the
probabilities of the Markov Chain resulted by the recent
accelerations. There is a need to multiply each probability to
determine the probability of a chain. However, a single

Cloud-Based Driver Monitoring and Vehicle Diagnostic with OBD2 Telematics 4

24th - 26th August 2015 International Conference on Advances in ICT for Emerging Regions ICTer2015

transition that has zero probability during the measured time
interval results in a zero probability of the entire chain.
Therefore, to avoid this problem we simplified the calculation
by considering the property emphasized by Eqn. 1. � = √ ∗ ∗3 → lg � = lg +lg +lg 3 (1)

Whenever the CEP engine receives an acceleration transition
stream, it calculates the average transition probability for 5
minutes using a sliding window on the timestamp with the aid
of the transition table stored in the database by BAM. The
averaged probability of each chain of accelerations is
calculated using the property highlighted in Eqn. 1. Once
averaged probability of each chain drops below a predefined
threshold, an alert is sent to the driver and other stakeholders.

IV. VEHICLE DIAGNOSTIC

Modern computerized engine control systems rely on inputs
from a variety of sensors. Among the sensors which are present
in modern computerized vehicles, Mass Air Flow (MAF)
sensor and Oxygen (O2) sensor are two of the most important
sensors that crucially determine the engine performance,
emissions, and other important functions. OBD2 system
usually takes some time to identify malfunctions of these two
sensors and indicate that on the dashboard. However, in the
meantime, lots of fuel wastage can result. Sensors do not fail
suddenly, but gradually. Therefore, we came up with a solution
to detect impending failures so that they can be identified early.
Next, we discuss how our solution predicts O2 and MAF sensor
failures. We also briefly describe how engine coolant
temperature, engine oil temperature, fuel economy, and battery
voltage monitoring are performed.

A. Oxygen Sensor Failure

O2 sensor measures the amount of Oxygen left in the
exhaust, which in turn is used to balance the air/fuel ratio. A
typical oxygen sensor’s operation range should be between
0.1 V and 0.9 V in lean and rich conditions of the vehicle,
respectively. It will deviate when the sensor is failing. When
any of the bounds reaches 0.45 V sensor is considered as failed
[13].

In our solution, the maximum and minimum voltages are
read by the app for 15 minutes at the start of each trip and
transmitted to the BAM by which the data are stored in the
database. BAM performs two regression analyses periodically
for both minimum and maximum values w.r.t the time as
shown in Fig. 4. Once regression is complete, the system
predicts the potential date of sensor failure and the driver will
be warned, if the predicted date is closer to the current date.

B. Mass Air Flow Sensor Failure

MAF is an air flow sensor, which measures the mass flow
rate of air entering the engine which in turn is used to calculate
fuel delivery and spark timing. OBD2 system gives a MAF
value in grams per second (gs-1) depending on the engine
model and the capacity; hence, MAF value cannot be directly
used to detect a failure. As illustrated in Fig. 5, higher MAF
values have a linear relationship with the corresponding engine
rpm values. When the MAF sensor is failing, the gradient will
be gradually reduced as shown in Fig. 6.

A regression analysis is done periodically and
corresponding gradients are stored in the database. Another
regression analysis is done with a lesser frequency for the
gradient values. The prediction is given by calculating the time
it takes for the gradient to acquire a certain threshold. When
the expected time to fail is lesser than one month, an alert is
generated. As the time gets closer and closer, alerts are
generated at a higher frequency.

C. Engine Coolant Temperature Monitoring

Coolant temperature, is queried from the OBD2 adapter
periodically and is forwarded to the CEP engine on the mobile
app. Received temperature readings are averaged over

Fig. 3. Acceleration transition diagram.

Fig. 4. Regression of max and min values of the O2 sensor.

Fig. 5. Flow rate vs. rpm in higher rpms for a normal sensor.

Fig. 6. Flow rate vs. rpm for a faulty sensor.

5 M. Amarasinghe, S. Kottegoda, A. Liyana Arachchi, S. Muramudalige, H.M.N.D. Bandara, and A. Azeez

24th-26th August 2013 International Conference on Advances in ICT for Emerging Regions ICTer2015

2 minutes using a time window. If the averaged value is greater
than the given temperature threshold (we used 104°C), the
driver is alerted immediately about the possible overheating.

D. Engine Oil Temperature Monitoring

Engine oil temperature can be retrieved using OBD2 Mode
01 PID 5C. If the oil temperature is too low while the engine
rpm is high, the produced water and Sulfur as by-products of
the combustion process can form acids and damage the engine
bearings. The app is also capable of generating alerts, if the
engine oil temperature is not within the desired operating range
when the average engine rpm is greater than a certain threshold.
As the operating range and the rpm threshold differ from
vehicle to vehicle it is configurable within the app along with
the time window for the average rpm.

E. Fuel Economy Monitoring

The fuel rate, along with the speed can be used to calculate
the fuel economy. Using two separate time windows for the
fuel rate and speed, the average fuel rate and the average speed
are calculated for a certain time duration. Then the average fuel
economy can be calculated using Eqn. 2.

Fuel Economy = (Avg. fuel consumption)/(Avg. speed) (2)

If the average fuel economy becomes lower than a certain
threshold, an alert is generated by the mobile app.

F. Vehicle Battery Voltage Monitoring

Battery voltage can be retrieved from the OBD2 adapter
using the AT command “AT RV” [2]. If this goes below a
certain threshold, the driver is alerted that there is a possible
battery charging failure.

V. EVALUATION

The main deliverables of the project are the mobile app for
Android devices and the web interface which displays
monitored data and analyzed results. The app was built in such
a way that it would display monitored data in real time using
dashboards as shown in Fig. 7. The app also shows
notifications (alerts).

In the use case of reckless driving detection, speed classes
were categorized as 20 kmph or below (Class A), 20 - 80 kmph
(Class B), 80+ kmph (Class C). Once the summarization of
data happens in the backend, it is able to display results as seen
in Fig. 8. Rapid acceleration counts (blue bars in the figure)
and rapid deceleration counts (yellow bars) were displayed in
the same graph. A user can get an idea of the recklessness of a
driver just by seeing that the height of the bars being great.
Especially, if the deceleration count is too high, it indicates a
higher recklessness due to rapid braking.

Driving anomaly test was carried out using two users where
a lot of data could be collected from one of them (user 1). The
model was created for user 1 using half of the data collected.
Then data from both the users were used in real time to validate
the current user. First, data from the other user (user 2) was
validated against the model and then data from user 1 was sent
to the CEP to be validated. The two datasets resulted in a
significant difference of average transition probabilities. The
resultant probabilities as well as the given speed patterns as the
input are shown in Fig. 9 and Fig. 10, respectively.

The graph shown in Fig. 9 can be divided into two regions:
one, where the probability is very low, and the other where the
probability is relatively high. The threshold which separates

the two regions, was used to generate the alert. It can be seen
that the probability transition patterns of the two drivers are
significantly different from each other. But with time, user 2’s
pattern becomes a bit smoother and the pattern of user 1
becomes a little wavy. Therefore, the acceleration transition
probability for the anomalous driver get a little high.

Fig. 7. Dashboards of the Android app.

Fig. 8. Rapid accelerations/decelerations graph.

Fig. 9. Driving anomaly results based on probabilities.

Fig. 10. Speed patterns used as inputs to driving anomaly detection.

Cloud-Based Driver Monitoring and Vehicle Diagnostic with OBD2 Telematics 6

24th - 26th August 2015 International Conference on Advances in ICT for Emerging Regions ICTer2015

Alternatively, the acceleration transition probability of user 1
gets a little low. This way a little change in the driving pattern
results in a big difference in the acceleration transition
probability.

Long term (ranging from weeks to years) and known sensor
failure data are required to demonstrate vehicle diagnostics. As
such data were not available, we generated synthetic data to
indicate sensor failures to test the detection and prediction of
sensor failures. A set of fabricated data were generated that
mimics failure of the Oxygen sensor in 3 months. We first
collected a real dataset that consists of minimum and
maximum voltage values with time. The dataset was then
converted into a dataset as shown in Fig. 4. Table I summarizes
the predicted failure date and the calculated wear level of the
sensor using different time spans. According to the dataset
actual failure happens on Feb 16, 2015. It could be observed
that the percentage error reduces as the failure date becomes
closer. Vehicle owner can see the current sensor status using
the web portal.

Similar synthetic dataset was created to demonstrate MAF
sensor failure. Data was fabricated in a way that the gradient
of the regression line between the MAF value and the rpm is
reduced with time. As Fig. 11 indicates, the user could view
the web interface to see how long it will take for the sensor to
fail.

VI. SUMMARY AND FUTURE WORK

We propose a driver monitoring and vehicle diagnostic
system using the telematics provided by OBD2 port available
in most of the contemporary vehicles. The proposed solution
is able to provide real-time alerts such as rising coolant
temperature and rapid fuel drops at the vehicle using a CEP
engine implemented on a mobile app. Moreover, the app filters
out uninteresting events that are forwarded to the cloud-based

backend conserving both the bandwidth and energy.
Furthermore, the app visualizes real-time readings from
vehicular sensors and notifications pushed from the cloud
backend. Given the data published to the backend, CEP on the
backend detects reckless and anomalous driving in real time.
Backend also use historical data to detect driving anomalies
and predict impeding sensor failures. App is currently
available on Google Play and can be used without the backend
features.

The main drawback of the proposed solution is its complete
dependency on the data communication of the smartphone. If
the driver does not allow data transmission via the smartphone
the system will not be useful. The proposed solution also
assumes that a driver possesses a smartphone capable of
running an Android app. A black box in the form of a dedicated
hardware device can be built to overcome this problem where,
once the device is plugged into the OBD2 port, data will be
uploaded to the remote servers autonomously. We are already
building a CEP engine for Arduino-based embedded systems,
which we believe will be useful in building such a black box
with the ability to do data filtering at the vehicle. The current
feature set only consists of a limited number of features which
were identified as crucial. The architecture is built in such a
way that new functionalities can be added whenever needed.
Another drawback of the system is that traffic conditions are
not considered when training the Markov model, which can
sometimes lead to wrong interpretation of driver behavior. In
future we plan to strengthen the accuracy of event detection
with fine-tuned algorithms and more real-world data.

REFERENCES
[1] “2012 Production Statistics,” International Organization of Motor

Vehicle Manufacturers, 2012. [Online]. Available:
http://www.oica.net/category/production-statistics/2012-statistics/.

[2] ELM Electronics, “On Board Diagnostics (OBD) ICs,” 2015. [Online].
Available: http://elmelectronics.com/DSheets/ELM327DS.pdf.

[3] M. J. Kim, J. W. Jang, and Y. S. Yu, “A study on in-vehicle system
using OBD-II with navigation,” Int. Journal Computer Science and
Network Security, vol. 10, no. 9, Sept., 2010, pp. 136-140.

[4] W. D. Huang, Y. Zhang, and J. H. Liu, “Research and design of the
automobile OBD data state monitoring system based on the Android
phones,” Advance Materials Research, vol. 605-607, 2013.

[5] A. Aljaafreh et al., “Vehicular data acquisition system for fleet
management automation,” in Proc. IEEE Intl. Conf. on Vehicular
Electronics and Safety (ICVES), July 2011, pp.130-133.

[6] P. S. Ganapati et al., “Android based universal vehicle diagnostics and
tracking system,” Intl. Journal of Modern Engineering & Management
Research, vol. 2, no. 1, Mar. 2014, pp. 35-41.

[7] S. Suhothayan et al., “Siddhi: A second look at complex event
processing architectures,” in Proc. ACM workshop on Gateway
Computing Environments (GCE ’11), Nov. 2011, pp. 43-50.

[8] WSO2 Inc., About BAM [Online]. Available:
https://docs.wso2.com/display/BAM241/About+BAM

[9] V. Bhoyar, P. Lata, J. Katkar, A. Patil, and D. Javale, “Symbian based
rash driving detection system,” Intl. Journal of Emerging Trends &
Technology in Computer Science, vol. 2, no. 2, 2013.

[10] American Association of State Highway and Transportation Officials,
in A Policy on Geometric Design of Highways and Streets, AASHTO,
2011, ch.3, pp. 3.

[11] B. Y. Liaw, “Fuzzy logic based driving pattern recognition for driving
cycle analysis,” Journal of Asian Electric Vehicles, vol.2, no.1, Jun,
2004.

[12] A. Wahab et al., “Driver recognition system using FNN and statistical
methods,” Advances for In-Vehicle and Mobile Systems: Challenges for
International Standards, Springer, 2007, pp.011-023.

[13] “Oxygen sensors: How to diagnose and replace.” [Online]. Available:
http://www.aa1car.com/library/o2sensor.htm

TABLE I
OXYGEN SENSOR ANALYSIS RESULTS

Timespan of Data Predicted
Failure Date

Error% Estimated
Wear Level

11/01/2015 –
20/01/2015

03/03/2015 57% 33.7%

20/01/2015 –
25/01/2015

20/02/2015 18% 43.1%

25/01/2015 –
30/01/2015

14/02/2015 11% 51.4%

Fig. 11. Regression of the gradient of the line between MAF rate and rpm..

