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Abstract— We present a cloud-based vehicular data acquisition 
and analytics system for real-time driver behavior monitoring, 
trip analysis, and vehicle diagnostics. Our system consists of an 
On Board Diagnostics (OBD) port to Bluetooth dongle, a mobile 
app running on a smart phone, and a cloud-based backend. We 
use a Complex Event Processor (CEP) at both the smart phone 
and the backend to detect and notify unsafe and anomalous 
events in real time. For example, CEP engine at the smart phone 
can alert the driver about rising coolant temperature and rapid 
fuel drops. It also provides a trip log and filter out what messages 
to be send to the backend, saving both the bandwidth and power. 
CEP on the cloud detects reckless driving in real time based on 
the sensor data provided through the OBD port. Historical data 
is also used by the backend CEP engine to detect driving 
anomalies and to predict impeding sensor failures. The mobile 
app visualizes both real-time data from sensors and alerts. A web-
based interface is provided to access the backend information. 
We tested the system on actual vehicles and demonstrated that 
the computing, bandwidth, and power consumption of the smart 
phone is reasonable. App is currently available in Google Play. 
 
Keywords— Driver Monitoring, Internet of Things, OBD2, 
Vehicle Diagnostics 

I. INTRODUCTION 

A car is no more a luxurious belonging of a person. It has 
rather become an integral part of a modern family. The usage 
of vehicles all over the worlds has drastically increased during 
the last decade. Over 60 million passenger cars have been 
manufactured in the year of 2012 [1]. This rapid increase of 
vehicles has led to many concerns for a range of people and 
organizations. For example, all parties (i.e., drivers, insurance 
companies, fleet vehicle managers, and low enforcement 
authorities) are concerned about reckless driving and driver 
anomalies. Moreover, people who are willing to purchase and 
sell cars are also concerned about the condition of the vehicle 
and its maintenance. 

OBD, which stands for On Board Diagnostics could simply 
be described as a standard which allows accessing the status of 
sensors attached to a vehicle via a port referred to as the OBD 
port. Some of the frequently used sensors include speed, 
engine rpm, coolant temperature, fuel rate and oxygen. OBD2 
[2], is the latest version of OBD and is implemented in most 
of the vehicles which are manufactured lately. Several adapters 
are commercially available to read data from the OBD2 port. 
ELM-327, which is used in the proposed system, is one such 
adapter where the data read from the OBD2 port are 
transmitted via Bluetooth upon pairing. 

Given the potential benefits of vehicular data analysis and 
the availability of technologies such as OBD, several vehicle 
monitoring and intelligent transport systems have been 
proposed. The vehicle diagnosis program proposed by Kim et 
al. [3] provides diagnosis of different kinds of vehicle 
malfunctions within the navigation system. It displays the data 
collected through the OBD port in a human readable manner. 
To see this information the driver has to select the “vehicle 
information” menu of the navigation pane. Much of this 
information is displayed on the dashboard by default. Besides, 
a driver cannot be staring into the navigation pane while 
driving since it distracts the driver. A lot of research work has 
been carried out in the area of vehicle monitoring through a 
server. While the main focus of most of the researches is on 
tracking vehicles [4, 5, 6], fault detection has also gained 
considerable attention [4, 6]. But there has not been a single 
system which considers all the aspects that would be of 
concern to people who are dealing with vehicles. Also, in 
almost all the proposed systems, there has been either simple 
or no processing of the data gathered from the Engine Control 
Unit (ECU) prior to display. Hence, it is hard to predict any 
undesired outcomes, such as an accident or failure of a sensor 
as they require both real time and long-term analysis of data 
regarding the driving habits and the vehicle condition. 

The proposed system is similar to the above described 
systems from the aspect that it uses OBD2 protocol and an 
Android app as the device of mediation. In addition, it comes 
with a set of complex analyses to perform reckless driving 
detection, driving anomaly detection, vehicle sensor failure 
prediction, high fuel consumption and high coolant 
temperature alert generation, and trip detail summarization. 
The analyses are performed on real time data as well on 
archived data that are collected over a long period of time. 
While some of these analyses are performed within the app, 
more complex and resource consuming ones are performed in 
the backend. The results of these analyses are made visible 
through two interfaces. The drivers themselves are able to get 
the results through the mobile app in the form of notifications. 
Alerts generated both in the app and backend due to 
undesirable situations are notified to the drivers. Also, results 
of long term analyses are displayed through a web interface. 
The web interface enables stakeholders such as vehicle owners, 
fleet vehicle managers, insurance companies, and authorities 
to analyze various cases of interest and initiate necessary 
process changes to enhance service quality, efficiency, cost, 
and promote responsible driving. 
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Section II describes the architecture of the proposed system 
along with the key components. Section III describes driver 
monitoring features whereas vehicle diagnostic features are 
described in Section IV. Section V presents the experimental 
results. Conclusion and future enhancements are presented in 
Section VI. 

II. SOLUTION ARCHITECTURE 

The proposed system is capable of collecting, storing, and 
analyzing vehicular data for a long period of time. As shown 
in Fig. 1 the mobile app pulls the vehicular data using an 
OBD2 to Bluetooth interface. The collected data is then 
preprocessed at the smartphone to detect interesting events. 
The preprocessed data is then sent to backend cloud servers 
using the smartphone’s 3G/4G connection.  

Fig. 2 shows the architecture of the proposed solution. The 
solution is designed in a scalable and an extensible manner so 
that the system can be extended to have a rich set of 
functionalities supporting numerous vehicles, sensors, and 
servers as needed. The mobile app is one of the key elements 
of the system, as it is responsible for the data transmission 
between the vehicle and the backend servers while also 
performing the task of the view layer. The app plays three 
major roles throughout the process: 

1)  Receiving data from OBD2 adapter: The app is capable 
of connecting to the ELM-327 adaptor via Bluetooth and 
communicating with the vehicle using OBD2 Parameter IDs 
(PIDs). Each PID provides a certain information about the 
vehicle, e.g., speed, engine rpm, fuel consumption, and error 
codes. The received data are logged inside the app and/or 
displayed in the user interface in real time. The architecture of 
the app is also extensible where the PIDs can be added 
dynamically. 

2)  Monitoring vehicle: The mobile app consists of a 
Complex Event Processor (CEP). Complex event processing 
can be regarded as a service that receives and matches lower-
level events and generates higher-level events in real time. 
Simply, it is a component that responds to event streams in an 
event driven manner. Hence, CEP has the capability to detect 
relevant events in incoming data streams according to a 
predefined set of queries. For example, queries can be added 
to alert the driver, if the vehicle is running with a high rate of 
fuel consumption or high coolant temperature for a 
considerably long period of time. CEP queries can be also used 
to summarize trip details in real time, e.g., average fuel 
consumption for the ongoing trip. We use Android 
implementation of the WSO2 Siddhi CEP engine as it is 
lightweight and outperforms many other CEP engines in terms 
of throughput and latency [7]. Moreover, Siddhi supports 
adding queries dynamically hence provides extensibility to 
support future monitoring tasks as well. More specifically, 
OBD2 data from the engine are received as event streams (e.g., 
speed stream consisting of time stamp and speed, fuel stream, 
coolant temperature stream, etc.). The Siddhi CEP engine 
decides the importance of the received streams and depending 
on the information they provide, it decides two things. For 
simple use cases such as coolant temperature monitoring it 
makes the app generate an alert. For complex use cases, it 
transmits the filtered streams to the backend servers. Alerts are 
generated when unusual behaviors are detected in the 
incoming data (i.e., data matching a given CEP query is found) 

and the results are shown/notified to the driver via the mobile 
app.  

3)  Selective transmission of data to backend: A user has to 
pay for each megabyte that is consumed over the 3G/4G 
network. Therefore, the network bandwidth usage of the app 
is an important fact to consider. Hence, the CEP queries are 
used in the mobile app to filter out uninteresting events and 
only the useful data are transmitted over the 3G/4G network. 
CEP queries are also used to collect and send only the 
aggregated data for certain types of sensor readings. Such 
reduction in data not only reduces the bandwidth requirement, 
but also minimizes power consumption of the smartphone. 
Data are forwarded to the backend using HTTP messages. 

Complex event processing is also utilized at the backend. 
Backend is also based on the Siddhi CEP engine; however, 
with a lot more computing capabilities and with the freedom 
to work with a large database. The CEP at the backend is 
responsible for detecting more complex driver and engine 
anomalies (e.g., reckless driving) and generating alerts in real 
time. Some of these alerts are pushed back (as push 
notifications) to the mobile app and notified to the driver. For 
example, warn the driver for reckless behavior and speed alters 
based on known GIS (Geographic Information System) 
information. 

The system is capable of performing long term analyses too. 
By identifying patterns, it should be able to predict undesirable 
outcomes such as potential failures of sensors. This is enabled 
by using a Business Activity Monitor as the long term analyzer 
at the backend. BAM is a solution primarily intended to 
provide a real-time summary of business activities and is 
capable of collecting, storing, and analyzing data. In our 
implementation BAM receives events published by the mobile 

 
Fig. 1. Overview of the proposed system. 

 
Fig. 2. Architecture of the proposed system. 
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app and stores them in a NoSQL database where analyses are 
performed regularly to identify gradual changes in data. We 
use WSO2 BAM [8] due to its performance and better 
integration with the Siddhi CEP engine. WSO2 BAM supports 
distributed processing, integrated with Apache Cassandra, a 
highly-scalable NoSQL database. This enables the distributed 
processing of datasets of a large number of vehicles and their 
owners across clusters of computers. While some of the results 
of analyses are notified to the user in the form of alerts (e.g., 
popups, e-mail, and SMS), all the results of the analyses 
performed in the backend are displayed on the web portal. This 
way, drivers themselves could monitor their driving behaviors 
and changes in the vehicle condition. Similarly, organizations 
could monitor their customers’ behaviors and conditions of the 
vehicles that are owned by them. To support multiple users, 
roles, and devices the propose system also provide necessary 
identity and authorization services at the backend (see Fig. 2). 

III.  DRIVER MONITORING 

Driver monitoring includes two aspects. First is reckless 
driver monitoring, which is mostly useful to vehicle owners 
and organizations such as insurance companies and law 
enforcement authorities. The recklessness of the driver’s 
driving pattern can be measured within a certain period of time 
such as 20 hours, one week, one month, and three months. 
Second is driver anomaly detection. While anomaly detection 
is important for the above organizations, it is more important 
to the drivers themselves to get alerted when they deviate from 
their usual driving pattern due to stress, drunk, distractions, etc. 
The two use cases are described in the following subsections. 

A. Reckless Driving 

Reckless driving causes a serious danger to the driver as 
well as general public. If a reckless driving detection 
methodology can be implemented, it will be beneficial for 
other drivers, vehicle owners, general public, insurance 
companies, and many other stakeholders who would not want 
to risk time and money for the consequences of reckless 
driving.  

Bhoyar et al. [9] proposed a system for reckless driving 
detection, which is a mobile phone based rash driving 
detection system. There, reckless driving behavior was 
detected using the lateral acceleration and longitudinal 
acceleration. Many of the literature demonstrated that the 
sudden variation of the longitudinal acceleration is a good 
metric to detect reckless driving. Therefore, we also used 
longitudinal acceleration to detect reckless driving. The 
proposed solution for detecting reckless driving include 
following two steps: 

1)  Preprocessing within app: The speed of the vehicle can be 
read in real time from the OBD2 adapter. Because it is the 
acceleration/deceleration that is of concern, the Siddhi CEP 
engine transforms the speed streams into 
acceleration/deceleration streams by considering consecutive 
speed readings using the following Siddhi query: 

 

Calculated acceleration/deceleration is compared with a 
predefined threshold to detect whether it is reckless or not. We 
use a threshold of 4.5 ms-2, as per the recommendation by the 

American Association of State Highway and Transportation 
Officials [10]. Binary values of 1 are assigned to the 
acceleration/deceleration values above the threshold and 
binary 0 is assigned for values below the threshold.  The total 
number of 1’s is then counted over a predefined time interval 
(e.g., 2 minutes). The counts are then classified according to 
the driving cycle (i.e., traffic, normal, and highway) of the trip. 
A driving cycle is a series of data points representing the speed 
of a vehicle versus time. Driving cycle is determined by the 
average speed of the vehicle throughout 10 minutes. The count, 
together with the detected driving cycle are sent to the backend 
server periodically. Acceleration and deceleration values are 
sent as two separate streams. 

2)  Processing at Backend 

At the backend, data received from the app are summarized 
by the WSO2 BAM as hourly, weekly, monthly, and three 
months aggregates and stored in an SQL database ready to be 
read by the web portal. Moreover, when the aggregate for a 
given time window is above a predefined threshold, alerts can 
be pushed to both the drivers and other stakeholders. 

B. Detection of Driving Anomalies 

Identifying driver patterns have become a principal research 
area due to the high concern about fuel efficiency and safe 
driving. Liaw [11] proposed a solution to the problem of 
identifying driving patterns using fuzzy logic. There, the main 
focus has been on classifying the region a driver usually drives 
in, where regions are considered to be of five main categories 
such as stop-n-go, urban, suburban, rural, and highway. Wahab 
et al. [12] suggests that the driving pattern can uniquely define 
a driver, thus enabling us to use it as a biometric. There, it is 
explained that, what is unique to each driver is the pressure 
distribution with time on the accelerator and brake pedals. 
Also, it was found that it is not the speed pattern, but the 
acceleration pattern that is unique to each driver. 

We use a hidden Markov model to determine the difference 
between the current driving pattern and the past patterns of a 
(driver, vehicle) combination. Identifying driving anomalies 
happens in the following three stages: 

1)  Preprocessing: As in the use case of reckless driving 
detection, it is the acceleration that is of concern. Siddhi CEP 
engine transforms the speed streams into acceleration streams. 
These acceleration streams are then converted to acceleration 
transition streams which consist of the timestamp, previous 
acceleration, and the current acceleration. These acceleration 
streams are transmitted to the backend. These streams are used 
by the CEP in real time for calculating whether the readings 
are in accordance with the normal driving pattern. The same 
stream is also used by BAM to update the model daily. 

2)  Model Creation: The Markov Model is shown in Fig. 3 is 
stored in an SQL database in the form of a transition table of 
accelerations. The BAM processes the events (i.e., 
acceleration transition streams) received from the app, and 
then updates its transition table consisting of daily transition 
probabilities. Therefore, the more acceleration readings the 
BAM receive, the more accurate the model becomes. 

3)  Determining Anomalies: This is a task that happens almost 
in real time. An anomaly is detected by calculating the 
probabilities of the Markov Chain resulted by the recent 
accelerations. There is a need to multiply each probability to 
determine the probability of a chain. However, a single 
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transition that has zero probability during the measured time 
interval results in a zero probability of the entire chain. 
Therefore, to avoid this problem we simplified the calculation 
by considering the property emphasized by Eqn. 1. � = √ ∗ ∗3  → lg � =  lg +lg +lg 3  (1) 

Whenever the CEP engine receives an acceleration transition 
stream, it calculates the average transition probability for 5 
minutes using a sliding window on the timestamp with the aid 
of the transition table stored in the database by BAM. The 
averaged probability of each chain of accelerations is 
calculated using the property highlighted in Eqn. 1. Once 
averaged probability of each chain drops below a predefined 
threshold, an alert is sent to the driver and other stakeholders. 

IV.  VEHICLE DIAGNOSTIC  

Modern computerized engine control systems rely on inputs 
from a variety of sensors. Among the sensors which are present 
in modern computerized vehicles, Mass Air Flow (MAF) 
sensor and Oxygen (O2) sensor are two of the most important 
sensors that crucially determine the engine performance, 
emissions, and other important functions. OBD2 system 
usually takes some time to identify malfunctions of these two 
sensors and indicate that on the dashboard. However, in the 
meantime, lots of fuel wastage can result. Sensors do not fail 
suddenly, but gradually. Therefore, we came up with a solution 
to detect impending failures so that they can be identified early. 
Next, we discuss how our solution predicts O2 and MAF sensor 
failures. We also briefly describe how engine coolant 
temperature, engine oil temperature, fuel economy, and battery 
voltage monitoring are performed. 

A. Oxygen Sensor Failure 

O2 sensor measures the amount of Oxygen left in the 
exhaust, which in turn is used to balance the air/fuel ratio. A 
typical oxygen sensor’s operation range should be between 
0.1 V and 0.9 V in lean and rich conditions of the vehicle, 
respectively. It will deviate when the sensor is failing. When 
any of the bounds reaches 0.45 V sensor is considered as failed 
[13]. 

In our solution, the maximum and minimum voltages are 
read by the app for 15 minutes at the start of each trip and 
transmitted to the BAM by which the data are stored in the 
database. BAM performs two regression analyses periodically 
for both minimum and maximum values w.r.t the time as 
shown in Fig. 4. Once regression is complete, the system 
predicts the potential date of sensor failure and the driver will 
be warned, if the predicted date is closer to the current date. 

B. Mass Air Flow Sensor Failure 

MAF is an air flow sensor, which measures the mass flow 
rate of air entering the engine which in turn is used to calculate 
fuel delivery and spark timing. OBD2 system gives a MAF 
value in grams per second (gs-1) depending on the engine 
model and the capacity; hence, MAF value cannot be directly 
used to detect a failure. As illustrated in Fig. 5, higher MAF 
values have a linear relationship with the corresponding engine 
rpm values. When the MAF sensor is failing, the gradient will 
be gradually reduced as shown in Fig. 6. 

A regression analysis is done periodically and 
corresponding gradients are stored in the database. Another 
regression analysis is done with a lesser frequency for the 
gradient values. The prediction is given by calculating the time 
it takes for the gradient to acquire a certain threshold. When 
the expected time to fail is lesser than one month, an alert is 
generated. As the time gets closer and closer, alerts are 
generated at a higher frequency. 

C. Engine Coolant Temperature Monitoring 

Coolant temperature, is queried from the OBD2 adapter 
periodically and is forwarded to the CEP engine on the mobile 
app. Received temperature readings are averaged over 

 
Fig. 3. Acceleration transition diagram. 

 
Fig. 4. Regression of max and min values of the O2 sensor. 

 
 
Fig. 5. Flow rate vs. rpm in higher rpms for a normal sensor. 

 
Fig. 6. Flow rate vs. rpm for a faulty sensor. 
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2 minutes using a time window. If the averaged value is greater 
than the given temperature threshold (we used 104°C), the 
driver is alerted immediately about the possible overheating. 

D. Engine Oil Temperature Monitoring 

Engine oil temperature can be retrieved using OBD2 Mode 
01 PID 5C. If the oil temperature is too low while the engine 
rpm is high, the produced water and Sulfur as by-products of 
the combustion process can form acids and damage the engine 
bearings.  The app is also capable of generating alerts, if the 
engine oil temperature is not within the desired operating range 
when the average engine rpm is greater than a certain threshold. 
As the operating range and the rpm threshold differ from 
vehicle to vehicle it is configurable within the app along with 
the time window for the average rpm.  

E. Fuel Economy Monitoring 

The fuel rate, along with the speed can be used to calculate 
the fuel economy. Using two separate time windows for the 
fuel rate and speed, the average fuel rate and the average speed 
are calculated for a certain time duration. Then the average fuel 
economy can be calculated using Eqn. 2. 

Fuel Economy = (Avg. fuel consumption)/(Avg. speed) (2) 

If the average fuel economy becomes lower than a certain 
threshold, an alert is generated by the mobile app. 

F. Vehicle Battery Voltage Monitoring 

Battery voltage can be retrieved from the OBD2 adapter 
using the AT command “AT RV” [2]. If this goes below a 
certain threshold, the driver is alerted that there is a possible 
battery charging failure. 

V. EVALUATION  

The main deliverables of the project are the mobile app for 
Android devices and the web interface which displays 
monitored data and analyzed results. The app was built in such 
a way that it would display monitored data in real time using 
dashboards as shown in Fig. 7. The app also shows 
notifications (alerts). 

In the use case of reckless driving detection, speed classes 
were categorized as 20 kmph or below (Class A), 20 - 80 kmph 
(Class B), 80+ kmph (Class C). Once the summarization of 
data happens in the backend, it is able to display results as seen 
in Fig. 8. Rapid acceleration counts (blue bars in the figure) 
and rapid deceleration counts (yellow bars) were displayed in 
the same graph. A user can get an idea of the recklessness of a 
driver just by seeing that the height of the bars being great. 
Especially, if the deceleration count is too high, it indicates a 
higher recklessness due to rapid braking. 

Driving anomaly test was carried out using two users where 
a lot of data could be collected from one of them (user 1). The 
model was created for user 1 using half of the data collected. 
Then data from both the users were used in real time to validate 
the current user. First, data from the other user (user 2) was 
validated against the model and then data from user 1 was sent 
to the CEP to be validated. The two datasets resulted in a 
significant difference of average transition probabilities. The 
resultant probabilities as well as the given speed patterns as the 
input are shown in Fig. 9 and Fig. 10, respectively. 

The graph shown in Fig. 9 can be divided into two regions: 
one, where the probability is very low, and the other where the 
probability is relatively high. The threshold which separates 

the two regions, was used to generate the alert. It can be seen 
that the probability transition patterns of the two drivers are 
significantly different from each other. But with time, user 2’s 
pattern becomes a bit smoother and the pattern of user 1 
becomes a little wavy. Therefore, the acceleration transition 
probability for the anomalous driver get a little high. 

 
Fig. 7. Dashboards of the Android app. 

 
Fig. 8. Rapid accelerations/decelerations graph. 

 
Fig. 9. Driving anomaly results based on probabilities. 

 
Fig. 10. Speed patterns used as inputs to driving anomaly detection. 
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Alternatively, the acceleration transition probability of user 1 
gets a little low. This way a little change in the driving pattern 
results in a big difference in the acceleration transition 
probability. 

Long term (ranging from weeks to years) and known sensor 
failure data are required to demonstrate vehicle diagnostics. As 
such data were not available, we generated synthetic data to 
indicate sensor failures to test the detection and prediction of 
sensor failures. A set of fabricated data were generated that 
mimics failure of the Oxygen sensor in 3 months. We first 
collected a real dataset that consists of minimum and 
maximum voltage values with time. The dataset was then 
converted into a dataset as shown in Fig. 4. Table I summarizes 
the predicted failure date and the calculated wear level of the 
sensor using different time spans. According to the dataset 
actual failure happens on Feb 16, 2015. It could be observed 
that the percentage error reduces as the failure date becomes 
closer. Vehicle owner can see the current sensor status using 
the web portal.  

Similar synthetic dataset was created to demonstrate MAF 
sensor failure. Data was fabricated in a way that the gradient 
of the regression line between the MAF value and the rpm is 
reduced with time. As Fig. 11 indicates, the user could view 
the web interface to see how long it will take for the sensor to 
fail. 

VI.  SUMMARY AND FUTURE WORK 

We propose a driver monitoring and vehicle diagnostic 
system using the telematics provided by OBD2 port available 
in most of the contemporary vehicles. The proposed solution 
is able to provide real-time alerts such as rising coolant 
temperature and rapid fuel drops at the vehicle using a CEP 
engine implemented on a mobile app. Moreover, the app filters 
out uninteresting events that are forwarded to the cloud-based 

backend conserving both the bandwidth and energy. 
Furthermore, the app visualizes real-time readings from 
vehicular sensors and notifications pushed from the cloud 
backend. Given the data published to the backend, CEP on the 
backend detects reckless and anomalous driving in real time. 
Backend also use historical data to detect driving anomalies 
and predict impeding sensor failures. App is currently 
available on Google Play and can be used without the backend 
features. 

The main drawback of the proposed solution is its complete 
dependency on the data communication of the smartphone. If 
the driver does not allow data transmission via the smartphone 
the system will not be useful. The proposed solution also 
assumes that a driver possesses a smartphone capable of 
running an Android app. A black box in the form of a dedicated 
hardware device can be built to overcome this problem where, 
once the device is plugged into the OBD2 port, data will be 
uploaded to the remote servers autonomously. We are already 
building a CEP engine for Arduino-based embedded systems, 
which we believe will be useful in building such a black box 
with the ability to do data filtering at the vehicle. The current 
feature set only consists of a limited number of features which 
were identified as crucial. The architecture is built in such a 
way that new functionalities can be added whenever needed. 
Another drawback of the system is that traffic conditions are 
not considered when training the Markov model, which can 
sometimes lead to wrong interpretation of driver behavior. In 
future we plan to strengthen the accuracy of event detection 
with fine-tuned algorithms and more real-world data. 
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TABLE I  
OXYGEN SENSOR ANALYSIS RESULTS 

Timespan of Data Predicted 
Failure Date 

Error% Estimated 
Wear Level 

11/01/2015 – 
20/01/2015 

03/03/2015 57% 33.7% 

20/01/2015 – 
25/01/2015 

20/02/2015 18% 43.1% 

25/01/2015 – 
30/01/2015 

14/02/2015 11% 51.4% 

 

Fig. 11. Regression of the gradient of the line between MAF rate and rpm.. 


